73+ L= %m(.i“.2 + %) — %k(rg + ¢?) and the two Lagrange equations are —kxr = mi
and —ky = mj. In the general solution, x and y oscillate with the same angular frequency
w = y/k/m and the point (z,y) moves around an ellipse.

T8ax (a) L=T-U =im(z2+23) - Lkz.
(b) Solving for x; and z» in terms of X and x, we find
I :X+%;r+%l and 1,=X— %tc—%f.
Differentiating these, and substituting into £, we find
L=1Im{(X +1i)+ (X - 12)% — Lka? = mX? + Imi? — Lka?

The two Lagrange equations are

oL d oL .
X eqn. d—X B Eﬂ o1 0=2mX
and
oL dac i
X eqn: e 3o or — Rr = smr.

(c) The X equation implies that X () = const = V, and hence that X(t) = V,t + X, ;
that is, the CM moves like a free particle, which we could have anticipated, since there are
no external forces. The x equation has the general solution z(t) = A cos(wt — ¢): that is,
the two masses oscillate in and out, relative to each other, with frequency w = /2k/m.
The factor of 2k inside the square root, can be understood in several ways: for example, the
spring is compressed (or stretched) by twice the amount that either separate mass moves.
Thus the force on either mass is as if the spring had force constant 2k.

7.10 x = = pcoso, y = psing, z = p/tana, and, in the other direction, p = /22 + y?
(or p = ztana) and ¢ = arctan(y/x) with ¢ chosen to lie in the right quadrant.

712 » If we define £ = T — U = imi* — U(z), then 0L/0x = —9U/dx = F and
(d/dt)(0L/di) = mi. Substituting into Newton’s second law F + Fy;. = md, we find that
oL P d oL
a fric — EE .

7.14 » Recalling that I = %mﬂ2 and that w = #/R, we see that the kinetic energy is
T = imi? + LIw? = 3mi?. Therefore, the Lagrangian is £ = 3mi? + mgz, the Lagrange
equation is mg = 3ma/2, and ¥ = 2¢g/3.




7.16 x Since w = v/R, the cylinder’s KE is T = imv® + ;Iw? = 3(m + I/R?)i?. The PE
is U = —mgzsin a, so the Lagrangian is £ = %(m + I /R?)i? + mgrsina and the Lagrange
equation is mgsina = (m + I/R*)#. Therefore i = (mgsina)/(m + I/R?).

7.20 » The helix satisfies p = R and 2 = A¢. Thus the bead’s velocity is v = (p, pp, 2) =
(0, Rp, %) = #(0,R/\ 1) and its KE is smv? = zmz(1 + R?/A?). The PE is U = myz,
so the Lagrangian is £ =T — U = ém:':?(l + R?/X?) — mgz. The Lagrange equation is
—g = (1 + R?/A\?)z (after canceling a factor of m), and 2 = —g/(1 + R%/A?). When R — 0
this answer reduces to # = —g, which is correct because in this limit the helix reduces to a
vertical frictionless wire, on which the acceleration is just g vertically down.

7.22 »  We must first write down the Lagrangian in an inertial frame, for which the natural
choice is a frame fixed to the earth, relative to which the elevator is accelerating upward.
The point of support in the elevator’s ceiling has velocity V. = (0, at) (if we measure x
horizontally and y vertically up) and position (0, %(:!2). The bob’s velocity relative to the
elevator is v, = (l¢ cos ¢, l¢ sin ¢). Thus its velocity relative to the ground is v =V + v =

(fq:j cos ¢, at + losin ¢). The bob’s height above the ground is y = il,ﬂt2 —lecos¢. You can
now write down the KE and PE and (after a little algebra) the Lagrangian

L=1mv’ —mgy = %m (azi‘2 + 2atldsin ¢ + lzéz) —mg (%afz —lcosg).

2
The Lagrange equation is
oL docL

: d ..
— =—— = matldcosp — mglsine = — (ml*¢ + matl sin ¢
36 ~ @35 peosd —mylsing = —(ml"¢ 9)
= ml?¢ + matlo cos ¢ + mal sin ¢.
Making a couple of cancelations and rearranging, we arrive at the equation fd) = —(g+a) sin o,
which is the equation for a normal (non-accelerating) pendulum, except that g has been
replaced by (g + a).

7.26 » From Eq.(7.79), 2 = w?sin®f, = w?(1—cos?f, ), and, from (7.76), cos 6, = g/(w?R).
Combining these, we find that (¥ = \/w? — ¢?/(wR)? as claimed.




7.28 xx (a) Consider the equilibrium point with 0 < 6 < 90°, )
labeled (a) in the picture. As seen in the rotating frame,
the bead is subject to three forces, the normal force of
the hoop (not shown in the picture), the force of gravity,
F,. = mg, and the centrifugal force F ¢ = mw?p, radially
out from the axis of rotation, where p = Rsin# is the
distance of the bead from the axis. The bead will be

in equilibrium if and only if the tangential component

of the net force is zero. Since the tangential component
of the normal force is zero, this condition is,

Fiang = —(mg)sin @ + (mw’Rsin 0) cos® = m(w’ R cos# — g)sinf = 0.
This condition is satisfied if and only if cos @ = g/w*R, which is precisely the condition (7.71).
(b) Suppose the bead has moved a little away from the equilibrium at the top of the
hoop, as indicated by (b) in the picture. At this position the tangential components of F,,

and F; are both pulling the bead away from equilibrium. Therefore the equilibrinm at the
top is definitely unstable.

(c) Consider the equilibrium with @ negative [across from (a) in the picture] and suppose
the bead moves a little up from the equilibrium (# more negative). This makes cos # smaller,
and the first parenthesis on the right of Eq.(7.73) becomes negative. Since sinf is also
negative, @ is positive, and the bead accelerates back toward equilibrium. Similarly, if the
bead moves down from equilibrium, @ becomes negative and, again, the bead accelerates
back toward equilibrium. Therefore, the equilibrium is stable.

7.29 xx Because the angle between the line OP and the horizontal is wt, the position of P
is (Reoswt, Rsinwt). Therefore the position of the pendulum’s bob is

r = (z,y) = (Rcoswt + Isin ¢, Rsinwt — [ cos ¢)
and its velocity is . :
v = (&,7) = (—wRsinwt + ¢l cos ¢, wR coswt + ¢l sin ¢).
Therefore the Lagrangian is
L =1mv® — mgy = tmw’R® + 6°1> + 2wRPl sin(¢ — wt)] — mg(Rsinwt — I cos ¢)

where I have used a couple of trig identities to combine various terms (and omitted a con-
stant). The two derivatives of £ are

ac : aL :
— = mwR¢l cos(¢p — wt) —mglsing and — = m[dl* + wRlsin(¢p — wt)]
do Ao
and the Lagrange equation, after a couple of cancellations, is
hp = —gsing + w?R cos(od — wt).

As w — 0, this becomes l¢ = —gsin ¢, the equation for an ordinary simple pendulum.




7.34 »» (a) Let the unstretched length of the spring be [ and consider a short segment of
spring a distance £ from the fixed end and of length d£. Since the spring is uniform, the
mass of this segment is Md{/! and since the spring stretches uniformly its velocity (when
the cart has velocity &) is #€/l. Therefore the KE of this segment is %ﬂ.f:&zfzdfﬂ:‘, and the
total KE of the whole spring is

VY
T = 1Mz

!
; o
- 2 = — [V ..2
58 ./L;fa'{ 6.’\!.)*

Therefore the Lagrangian for the system of spring and cart is £ = %(m + M /3)z? — %krz.

(b) The Lagrange equation is —kz = (m + M/3)i, which is the same as for the usual
massless spring except that m, the mass of the cart, has been replaced by m + M/3. In

particular, the angular frequency of the oscillations is w = \/k/(m + M/3).

7.37 »xx (a) The hanging mass is a distance L — r below the table. Thus it's KE is %m'f*2
and its PE is —mg(L —r), or just mgr, if we drop an uninteresting constant. The mass on
the table has KE = %iv':'l.(:-"‘2 +r2¢?) and PE which is constant and we may as well take to be
zero. Thus .
L =mi* + imr’¢® — mgr.
(b) The two Lagrange equations are
oL d oL

" aio or mr¢? — mg = 2mr
and

oL daoc _d, o

36~ dtag or 0= E(”“ ®).

The ¢ equation says simply that the angular momentum £ = 'rrr.'."2q}) is constant.
(c) Clearly ¢ = ¢/mr?, and the r equation can be rewritten as
2
2mi = — — myg. vii
—3—m (vii)
The length r can remain constant if and only if # = 0. This requires that £2/mr? = mg.
(This condition says that the centripetal force needed to keep the upper mass in a circular
path must equal the tension needed to hold the lower mass at a fixed height.) Therefore,
ro = [(?/(m*g)]'/°

(d) If r = r, + €, then (vii) becomes

” & e (i, ¢ E A P
méE= —————mg = — —] —mgr= —(1=-3—]-m
m(r, + €)3 8 mr3 N To 9 mr3 s 9
where, to get the final expression, I used the binomial approximation. The first and last
terms in the final expression cancel, and we are left with 2mé = —3(£2/mr!)e, which implies

that € oscillates sinusoidally with frequency /3/2¢/mr2 = \/3g/2r,, since {/m = \/gr3.

In particular, since the displacement ¢ oscillates, the equilibrium at r = r, is stable.




7.40 x»»xx (a) The bob’s velocity is v = (0, RO. Résin #) and its height below the support
is 2 = Rcos 6. Therefore ) )
L=T-U=1imR*6* + ¢*sin’d) + mgR cosf

The 6 and ¢ equations are (after a little tidying)
Ré?*sinfcosf — gsinf = R and  mR%@sin’f = const.

(b) The ¢ equation tells us that the z component of angular momentum, ¢, = mR2¢sin?d,
is constant.

(c) If ¢ is constant, the # equation reduces to —gsinf = RA, which is the equation for
a simple pendulum. That is, in this case, the pendulum swings in a single vertical plane,
¢ = ¢,, just like a simple pendulum.

(d) If we replace & by £./(mR?sin®d), the 6 equation becomes

Rl = k% — gsind, (xiii)
where k denotes the positive constant k = £2/m?R®. Now € can remain constant if and only
if # = 0, which requires that # satisfy k cos# = gsin*6. This equation can only be satisfied if
0<6#<m/2 (If 7/2 < 6 <, the left side is negative while the right is positive.) If we vary
¢ from 0 to w/2, the left side decreases steadily from & to 0 while the right side increases
steadily from 0 to g. Therefore there is exactly one value # = ¢, at which the angle f# can
remain constant. In this motion the string of the pendulum traces out a vertical cone of half
angle @,.

(e) We can rewrite the @ equation (xiii) as RO = f(0), where f(0) = k(cos@/sin’0) —
gsinf. Now, at the “equilibrium” value # = 6, we know that f(8,) is zero. Thus if # is
close to the equilibrium value, 6 = 6, + €, we can write Ré = f'(6,)e, and by differentiating
you can check that f'(#) is the sum of three terms, all negative in the range 0 < 6 < 7/2.
Therefore the equation of motion has the form € = (negative constant)e, and # executes
simple harmonic motion about #,. The motion of the bob is uniform motion in a horizontal
circle with a superposed small sinusoidal motion in the @ direction.




